If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81x^2-450x+49=0
a = 81; b = -450; c = +49;
Δ = b2-4ac
Δ = -4502-4·81·49
Δ = 186624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{186624}=432$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-450)-432}{2*81}=\frac{18}{162} =1/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-450)+432}{2*81}=\frac{882}{162} =5+4/9 $
| 1+3(7-5)=x | | 2^(2x-1)=32 | | 2^{(2x-1)}=32 | | 9x+6+10x-1+10x+7=360 | | 43+x+x-1=180 | | 2x+x+40=140 | | 18-26=4z | | 5x+37=-6(1-8×) | | 20/10*8/2=a | | -3(a-8)+4a=-8(a+3)+3 | | 0.4x=25 | | 3x+25+3x-3=47-3x+38 | | (3)/(5)=(8)/(x) | | 2(x+6)-5x=9x+5-12x | | 17x-5=39 | | (2x-8)/4=5 | | x^2+7x=228 | | x=2*4-12/2 | | x=5-(4+(-1))^2 | | 0.07c=28 | | 1.3y+3.4=0.6y-1.15 | | 5(2x−4)+3x=10 | | 5(5)^2x-26(5)^x+5=0 | | 5x−2=8x+1 | | 9x-2=9-8x | | 5/8a=6+4/9a | | 8x+7=-7+19 | | 7m-25=2 | | 6^x=5^x-1 | | 1.6X=x^2+13x | | 21/4=21/n | | |m−1|=4 |